×
Quick Equipment Search
Equipment Fliter










used search tag

We are hiring! Run with Riesterer and Schnell: Apply Today

Search

1725 CCS TWIN ROW PLANTER

Planter

  • 12 twin-rows with 36- or 38-in. spacing
  • Available in mini-hopper twin row MaxEmerge™ 5 row unit
  • Requires large-frame row-crop tractor with minimum 250 hp



View Product Brochure



Features



SeedStar XP overview
SeedStar XP shown on the GreenStar™ 3 2630 DisplaySeedStar XP shown on the GreenStar™ 3 2630 Display
SeedStar XP shown on the GreenStar 2 1800 DisplaySeedStar XP shown on the GreenStar 2 1800 Display

Building upon the foundation of SeedStar 2, the SeedStar XP system takes planter monitoring to the next level. SeedStar XP is compatible with the GreenStar 2 1800 and 2600 Displays, GreenStar 3 2630 Display, the Gen 4 4200 CommandCenter™ Display, the Gen 4 4600 CommandCenter Display, the 4240 Universal Display, and the 4640 Universal Display. SeedStar XP is not compatible with the Gen 4 Extended Monitor.

 

Specific information about how the planter is performing enables the operator to make needed adjustments for implement optimization.

 

The SeedStar XP planting functions are fully integrated with the full spectrum of Precision Ag Technology applications such as Swath Control Pro™ system for planters, GreenStar AutoTrac™ assisted steering system, John Deere Operations Center, Documentation, and others. Integrated planting technologies for better asset utilization and ease of use is just part of what SeedStar XP provides.

SeedStar XP seed singulation monitoring
SeedStar XP seed singulation planter run pageSeedStar XP seed singulation planter run page

Understanding the meter singulation performance on the planter is critical to minimizing the amount of seed multiples and skips. As a result, the SeedStar XP monitoring system provides real-time information from the row-units about the overall seed singulation performance.

 

As seen in the screen shot image above, seed multiple information is displayed on the top portion of the planter-at-a-glance bar with seed skip information on the lower portion. This provides the operator a better understanding of relative seed multiple and skip data on a row-unit basis, all within one easy glance.

 

Also, within the seed singulation planter run page, information about row-units with the highest percentage of seed multiples and skips is provided in order to make necessary adjustments for better planter optimization.

SeedStar XP row-unit ride dynamics planter run page
SeedStar XP ride dynamics planter run pageSeedStar XP ride dynamics planter run page

While operating a planter, travel speed and field conditions can affect the amount of row-unit bounce that is experienced. Excessive row-unit bounce or vertical motion can cause problems with meter performance. To better understand the amount of row-unit vertical motion when travelling through a field, the SeedStar XP monitoring system provides real-time information on row-unit ride dynamics.

 

As seen in the ride dynamics planter-at-a-glance screen shot image above, the SeedStar XP system provides ride dynamic information for each sensor node that is mounted on the planter. Each sensor node transmits ride dynamic information for each planter frame section to allow for the operator to make necessary operating adjustments to improve overall planting performance.

SeedStar XP row-unit downforce planter run page
SeedStar XP downforce planter run pageSeedStar XP downforce planter run page

As row-unit downforce systems gradually change from heavy-duty downforce springs to pneumatic downforce, being able to understand the amount of as-applied row-unit downforce is needed while operating the planter.

 

With various soil conditions, moisture, etc. experienced while planting, it is imperative to have the ability to change actual row-unit downforce to have enough force for the Tru-Vee openers to penetrate the soil media. However, in some conditions, having too much downforce applied to the row-units for effective opener penetration could cause problems with side wall compaction from the gauge wheel.

 

Side wall compaction within the seed furrow can cause hatchet roots to develop, or roots that do not have the ability to penetrate the seed furrow soil media. This could lead to poor plant emergence and eventually lower overall yield performance.

 

With the SeedStar XP monitoring system, row-unit downforce information is measured by the downforce sensor and sensor nodes and transmitted to the GreenStar 2 Display in the tractor cab (as seen in the image above). The row-unit downforce information is displayed on the top portion of the planter-at-a-glance bar with more row-unit downforce information on the lower portion.

 

Two different control options are available on 1775NT, 1795, and DB Series Planters for pneumatic downforce. The base pneumatic downforce system requires manual control of the downforce to maintain the desired planting results or row-unit margin. Optional active pneumatic downforce takes SeedStar XP even further by removing constant downforce adjustments from the operator and actively controlling the downforce system to maintain a desired target margin.

SeedStar XP seed spacing monitoring
SeedStar XP seed spacing planter run pageSeedStar XP seed spacing planter run page

Throughout the planting process, obtaining good seed spacing is critical toward achieving plant growing conditions for maximum yield potential.

 

Today, many items are adjusted on the planter prior to planting to optimize overall seed spacing performance. After such adjustments are made, information about the actual seed spacing performance during planting was missing within the planter monitoring system. Now with SeedStar XP, seed spacing information is transmitted live via the GreenStar display to show the operator exactly what is happening with the planter behind them.

 

The SeedStar XP transmits seed spacing information onto the planter-at-a-glance bar for easy understanding of planter seed spacing performance. Also, information about seed skips and multiples is provided to help understand actual planter meter performance and other related system functions in order to make necessary adjustments if needed.

 

NOTE: Seed spacing and seed singulation information is only available when planting crops with seed drop rates below 40 seeds per second such as corn. With higher population crops such as soybeans the system does not provide spacing and singulation information because the number of seeds dropping per second is much higher.

SeedStar XP full planter performance page
SeedStar XP planter details SeedStar XP planter details

With the capability of monitoring differences in planting performance items such as seed singulation and row-unit downforce, having one screen to view all planter performance elements is needed to understand the whole planting system. SeedStar XP combines all of the various planting performance elements into one full-color, planter overview screen to enable for a quick understanding of relative planting functionality.

SeedStar XP half screens and other features
SeedStar XP seed singulation half screenSeedStar XP seed singulation half screen
SeedStar XP seed spacing half screenSeedStar XP seed spacing half screen

Other SeedStar XP monitoring features include:

  • Capable of monitoring individual row-unit and overall planter performance in terms of seed spacing, singulation, and row-unit downforce
  • Split-screen applications to enable use of popular guidance features such as AutoTrac assisted steering system
  • On-screen indication of sensor node/downforce sensor assemblies once configured within the monitor settings application
  • Full-color display icons for easy recognition and overall aesthetics
  • Pneumatic downforce system controls with the GS display application
SeedStar 2 monitoring original features

SeedStar XP retains all of those SeedStar 2 features that producers value and have come to expect:

  • Planter-at-a-glance – allows operator to view relative population levels of all rows on one screen.
  • Automatic valve calibration – with the SeedStar variable-rate drive (VRD), this is now completed automatically. There is no longer a need to manually calibrate the hydraulic valves.
  • Increased population updates – SeedStar will now update population levels once per second at planter start up then approximately once every three seconds.
  • Mapping of actual seed rates – when combined with documentation, actual and target seeding rates can now be mapped in John Deere Operations Center.
  • Reprogrammable utilizing controller area network (CAN) via Service ADVISOR™ diagnostics system.
  • Improved diagnostics/event recorder – on SeedStar VRD planters, additional diagnostic information is available, as well as an event recorder to capture system performance data at a specific point in time.
  • Ability to run motors at different population levels – on SeedStar VRD, operators running multiple motor systems can run each motor at a different speed, allowing different population levels within a planter.
  • User-configurable high fertilizer pressure alarm – allows the operator to be warned when fertilizer pressure reaches a specific level.
  • Automatic quick-start for SeedStar VRD – no longer does the operator need to press the quick-start button on end row turns to resume planting.
  • Automatic tractor speed source selection – when equipped with an 8000/9000 Series Tractor, the system selects the radar speed or allows for manual speed input selection.
Components and operation
Planter main 2 controllerPlanter main 2 controller
Sensor node assembly installedSensor node assembly installed

The SeedStar XP monitoring system contains the following components in order to support the planting data transfer to the GreenStar 2 Displays:

  • Seed monitor/variable-rate (SMVR) controller with model year 2011 or newer software
  • Planter main 2 controller (installed on all SeedStar XP eligible models for model year 2011 or newer)
  • Sensor node(s)
  • Downforce sensor assembly

 

The planter main 2 controller processes the row-unit data from the sensor node assemblies located on the row-unit head casting. The processed information is then sent to the SMVR controller to be integrated into the displayed information being sent to the GreenStar Display.

 

Downforce sensor assemblies are found on row-units with sensor nodes installed. The downforce sensor assembly is assembled with the gauge wheel depth-adjustment handle and provides gauge wheel pressure information to the respective sensor node for data processing.

Downforce sensor installedDownforce sensor installed
Downforce sensor assemblyDownforce sensor assembly

Depending on the planter size, different configurations of sensor nodes and downforce sensors are installed in support of the SeedStar XP monitoring system.

1720 CCS with 3523.9 L (100 bu) of seed capacity1720 CCS with 3523.9 L (100 bu) of seed capacity
#

Central Commodity System (CCS) seed delivery adds productivity through increased seed capacity, bulk-fill capability, and easy, thorough cleanout. The two tanks have a combined capacity of 3523.9 L (100 bu) on the 1720 CCS Planters.

 

The 1720 CCS Planters have been designed to allow for a convenient central filling location and easy cleanout. The rear entry ladder provides access to the filling platform between the tanks.

 

For those who work into the night, a fill light package is standard on machines equipped with CCS.

 

If the seed-carrying vehicle requires hydraulic power to run the unloading system, the auxiliary hydraulic coupler option can be ordered. These couplers are located at the bottom of the staircase and can be coupled under pressure. The system has a separate system filter that ensures the planter's hydraulic system remains free of contaminates.

 

The following crops can be planted with CCS: corn, sweet corn, popcorn, cotton, sunflowers, soybeans, and sorghum (milo).

1720 CCS fan and seed delivery hoses1720 CCS fan and seed delivery hoses
#

CCS is about reducing the time spent filling the planter with seed while maximizing the time spent planting. CCS for planters is a form of seed handling and delivery. The row-units perform the final task of seed metering and placement.

 

The CCS seed delivery process relies on a hydraulically driven fan to move seed from the CCS tanks to the row-units. A flow control valve and gauge, located near the tank, allows for the proper tank pressure setting based on seed type.

 

Air from the fan pressurizes the CCS tanks and delivers seed to the seed hoppers. Air flow enters the seed tanks through a nozzle in the manifold which pressurizes the tank. The air then picks up seed and moves out the other end of the nozzle into the seed delivery hoses. These hoses route the seed toward the hopper. A small amount of seed is traveling in the delivery hoses only when needed.

 

The hopper fills with seed until the delivery hose (discharge elbow) is covered. Once the opening is restricted, seed flow through the hose stops. Air flowing to the row-unit travels into the hopper and out through a vent. As the seed is picked up by the meter and planted, the seed pool shrinks until the end of the delivery hose is uncovered. At that time, the air flow and seed delivery resume, and the seed pool in the hopper is replenished.

CCS seed cleanout

Seed cleanout could not be easier with a CCS planter. Whether there are 12 or 48 rows, the CCS system and Pro-Series XP™ row-units make quick work of this chore. When the operator is finished planting, any remaining seed can simply be removed via access doors at the bottom of the CCS tank.

 

Because seed is only traveling through the CCS delivery hoses when required by the meter, there is not much left to clean.

 

Next, CCS seed delivery hoses are purged with air from the CCS fan, and the excess seed is pushed to the individual meters.

 

Lastly, the vacuum meter door is opened, and seed is removed with the supplied catch pan.

Small-seed CCS components
Manifold nozzle and nozzle with cover installedManifold nozzle and nozzle with cover installed
Small-seed elbow installed in mini-hopperSmall-seed elbow installed in mini-hopper

CCS seed delivery system increases planting productivity across the seven approved crops listed above. While highly effective when delivering seed from the CCS tanks to the vacuum meters, small or light seeds (sorghum and small cotton) will require two additional components to aid in proper seed delivery.
 
Manifold nozzle covers (clips) should be installed to ensure seed is adequately picked up into the air stream for delivery to the row-unit. Mini-hopper discharge elbows should also be changed from the standard elbow (holes) to the small seed elbow (slotted openings) when planting sorghum (milo) and small cotton.

1720 Central Commodity System (CCS™) drive system
Variable-rate drive systemVariable-rate drive system
#

The seed variable-rate drive on 1720 CCS Planters provides the ultimate planting productivity by utilizing three hydraulic motors to turn the seeding drive shaft. Hydraulic control of the seeding drive allows for on-the-go seeding rate changes right from the display mounted inside the tractor cab. Combine this seeding flexibility with the map-based planting option and seeding rates adjust automatically based on a prescription map.

 

Seed variable-rate drive requires the SeedStar™ monitoring system and a speed input signal. Either tractor or planter radar may be used or a global positioning system (GPS) speed signal. Radar speed input signal is recommended. Planter radar is ordered separately.

Seed variable-rate drive offers the following advantages: 

  • Rate changes are almost instantaneous – no ramp up or ramp down of the system as in some competitive systems
  • Permits the operator to match seed population based on different soil types or irrigation practices
  • John Deere design provides added operator safety by eliminating any possible drive creep found in some competitive variable-rate drive systems
Three-width drive disconnect
Three-width drive disconnect controlThree-width drive disconnect control
#

Three-width drive disconnect is base equipment on the 1720 CCS Planters. This feature is activated by three individual console mounted switches (control box) conveniently located in the tractor cab. The function easily shuts off the planter row-unit seed meters by one-, two- or three-drive segments independently.

RowCommand controls seed output
RowCommand on a MaxEmerge™ 5 row-unitRowCommand on a MaxEmerge™ 5 row-unit
RowCommand on a chain drive MaxEmerge 5 row-unitRowCommand on a chain drive MaxEmerge 5 row-unit

Controlling input costs and improving productivity are key producer requirements today. RowCommand is an effective, integrated John Deere solution designed to meet these intensifying needs. The RowCommand system manages seed output, reduces yield drag, and improves harvest capabilities on all Pro-Shaft™ driven row-units, and chain-driven MaxEmerge 5.

 

NOTE: Chain-drive RowCommand is only compatible with planters equipped with pneumatic downforce systems. On planters equipped with the heavy-duty downforce springs, potential chain interference may result and is not recommended.

 

NOTE: Chain-drive RowCommand requires some modification to brackets in order to function with corn finger pickup meters.

 

NOTE: Pro-Shaft drive RowCommand is compatible on MaxEmerge 5 row-units with vacuum and corn finger pickup meters. For mini-hopper row-units, RowCommand is compatible on vacuum meters only and is not compatible on corn finger pickup meters. Pro-Series™ XP row-units with corn finger pickup meters are not compatible with RowCommand.

 

RowCommand controls seed output by incorporating individual, low amperage clutches inside the Pro-Shaft and chain-driven gearboxes. Clutches are completely enclosed within the gearbox housing to protect them from the elements and harsh operating conditions.

 

When power is supplied, either manually or through John Deere Section Control software, clutches disengage the seed meters and seed flow stops. Controlling seed output at individual rows reduces overplanting in point rows and maximizes seed placement when entering/exiting headlands.

Components and operation
Electronic power modules shown on a 1775NT PlanterElectronic power modules shown on a 1775NT Planter
RowCommand clutch on MaxEmerge 5 with 105.7-L (3-bu) hopperRowCommand clutch on MaxEmerge 5 with 105.7-L (3-bu) hopper

RowCommand is a simple and efficient solution to control individual row planting. This system does not utilize air to operate; therefore, no compressor, air lines, or valve modules are required.

 

RowCommand utilizes low-voltage controller area network (CAN) messaging to signal power to the desired clutches to stop planting or eliminates power to resume planting.

 

This means very little power is used in normal planting conditions, and in the event a clutch fails electrically, the meter will continue to plant.

The RowCommand system requires the following five basic components to operate: 

  • Electric clutches
  • Electronic power modules (EPMs)
  • SeedStar™ 2 monitoring (wedge box/controller)
  • GreenStar™ (GS) display
  • Planter wiring harnesses

Clutches are protected within the sealed Pro-Shaft and chain-driven gearboxes for years of trouble-free operation and simple installation or removal. RowCommand has true individual-row control of up to 16 clutches or sections for planters larger than 16 rows.

 

Unique to RowCommand, the 16 available control sections can be configured based on operator preferences. For example, on a 1775NT 24-Row Planter, every two rows can be paired together for a total of 12 control sections, or control the outermost eight rows individually and the remaining inner rows paired together for 16 control sections.

 

While SeedStar with RowCommand has 16 control sections, a minimum of 152.4-cm (60-in.) wide sections are recommended for optimum Swath Control Pro™ solution capabilities. As with other Swath Control Pro products, an SF2 signal is the minimum level of accuracy recommend for operation.

Pro-Shaft drive RowCommand planters

RowCommand is available as a factory-installed option or as an attachment for field conversion attachments for the following Pro-Shaft drive planter models (see chart below).

 

Planter model Row configuration
 1725 12-row narrow, 12-row wide, and 16-row narrow 
 1725 Central Commodity System (CCS™) 16-row narrow
 1765 12-row narrow
 1775 12-row narrow
 1775NT 12 row, 16 row, and 24-row narrow
 1775NT CCS 12 row, 16 row, and 24-row narrow
 1795 12/23 row, 12/24 row, 16/31 row, and 16/32 row
 1795 24 row, 50.8 cm (20 in.)
 DB 44 24 row, 55.9 cm (22 in.)
 DB 58 32 row, 55.9 cm (22 in.)
 DB 60 36 row, 50.8 cm (20 in.) or 47 row, 38.1 cm (15 in.)
 DB 66 36 row, 55.9 cm (22 in.)
 DB 80 32 row, 76.2 cm (30 in.) or 48 row, 50.8 cm (20 in.)
 DB 88 48 row, 55.9 cm (22 in.)
 DB 90 36 row, 76.2 cm (30 in.)
 DB 120 48 row, 76.2 cm (30 in.)
 DR (Deere/Orthman™ planter) 16R40 16 row, 101.6 cm (40 in.)
 DR (Deere/Orthman) 18R38 18 row, 96.5 cm (38 in.)
Chain-drive RowCommand planters

In terms of planter compatibility, RowCommand for chain drive is designed for the following planter model configurations equipped with pneumatic downforce systems.

 

Planter model Row configuration
 1725 12-row narrow, 12-row wide, and 16-row narrow 
 1765 12-row narrow
 1775 12-row narrow
 1775NT 12 row and 16 row
 1775NT CCS 12 row and 16 row
 DB 44 24 row, 55.9 cm (22 in.)
Chain-drive RowCommand and heavy-duty downforce
Chain interference with heavy-duty downforceChain interference with heavy-duty downforce

As seen in the image, chain interference may result when operating chain-drive RowCommand on planters equipped with short and long parallel arms and heavy-duty downforce springs.

 

NOTE: Chain-drive RowCommand is only compatible with planters equipped with pneumatic downforce systems. On planters equipped with the heavy-duty downforce springs, potential chain interference may result and is not recommended.

 

Chain-drive RowCommand with corn finger pickup meters
Bracket material removalBracket material removal

Due to the design characteristics of the chain-drive RowCommand clutch, some modification to the corn finger pickup meter drive bracket is required. As seen in the picture to the left, some material needs to be removed from the front of the meter drive bracket in order for the chain-drive RowCommand clutch to have sufficient space for installation.

 

NOTE: Chain-drive RowCommand requires some modification to brackets in order to function with corn finger pickup meters.

RowCommand ordering information

To add RowCommand to a model year 2009 and newer planter model listed above is simple. Pro-Shaft drive attachments for field conversion and chain-drive attachments for field conversion are available by planter model to add the appropriate number of clutches, EPMs, brackets, hardware and row-unit harnesses. For complete installation and part detail for the RowCommand conversion, please use the RowCommand compatibility tool per specific planter model.
 
RowCommand is compatible and available for model year 2003 (serial number 700101) to 2008 (725101) planter models listed above. In addition to the attachment for field conversion attachment, a planter mainframe harness, SeedStar 2 controller (wedge box), and additional CAN harnesses are needed.

Integrated Swath Control Pro

Coupling RowCommand with Swath Control Pro provides the ultimate in precision planting and productivity. One company, one integrated solution are what we offer by incorporating Swath Control Pro capabilities within the SeedStar 2 wedge box (controller). Unlike previous systems, no rate controller, additional harnessing, or components are required to achieve automated individual-row control.

 

SeedStar 2 monitoring, RowCommand, and Swath Control Pro activation from John Deere Precision Ag Technologies are all that is needed when ordering.

System requirements

RowCommand is a simple and efficient means to control individual row planting through the use of low-voltage electric clutches. When activated, each clutch consumes no more than 0.5 amps. By design, power is only supplied to the clutch when a signal is received to stop planting. In a normal planting condition, no power is supplied and the clutch is de-energized. 

 

Power for the RowCommand system is provided from the 9-pin ISO implement connector. All late-model 8X00 and 9X00 Series John Deere Tractors equipped with the 9-pin ISO implement connector are capable of supplying ample power for system operation.

 

Along with ample system power, a GreenStar display and SeedStar monitoring are required for operation and control interface. The GreenStar display is where system setup, control settings, and manual control functions are performed.

Hydraulic steering for chassis lift system
Hydraulic steering cylinderHydraulic steering cylinder
Position sensorPosition sensor

The hydraulic steering assists the operator while backing into the next pass. The implement wheels are steered in the opposite direction of the tractor steering wheels when in reverse. The system is calibrated to steer the lift-assist wheels to the ideal steering angle when turning in reverse and guides the planter from a position sensor mounted to the tractor's front axle.

This steering system prevents the lift-assist wheels from casting or spinning around when the direction is changed from forward to reserve. This saves disruption to beds or soil. The hydraulic steering also provides resistance to lift-assist wheels, eliminating vibrations from the wheels while traveling forward, and is most beneficial during transport.

Less hydraulic steering for chassis lift system
Less hydraulic steeringLess hydraulic steering
#

Less lift-assist wheel steering is available to producers who do not need to guide the lift-assist wheels in reverse. This eliminates the need for the position sensor mounted the tractor’s front axle. The less hydraulic steering option does not provide resistance to vibrations from the lift-assist wheels during transport and allows the wheels to caster or spin around during direction changes.

Specifications


Key Specs 1725-ccs-twin-row-planter
Current Model
Number of rows12x2 Twin Row
Row spacing91.4 or 96.5 cm
36 or 38 in.
Frame - Fold configurationStack-folding
Frame - FlexibilityUp: 10 degree (angle)
Down: 7 degree (angle)
Row unit seed hoppers
Mini-Hoppers
Seed MetersBase
Vacuum

Rows and Row Spacing
Number of rows12x2 Twin Row
Row spacing91.4 or 96.5 cm
36 or 38 in.
Frame
Fold configurationStack-folding
Frame tube size
Fold-and-go from tractor cab
FlexibilityUp: 10 degree (angle)
Down: 7 degree (angle)
Hitch
Base
Optional
Rear hitch
Lift System
TypeSemi-integral only
Number of cylinders
Tires
Base12.5L-15SL 20 ply implement: 303 kPa
3.0 bar (44 psi)
7.60-15 8 ply implement: 359 kPa
3.6 bar (52 psi)
7.6-15 6 ply - traction: 276 kPa
2.8 bar (40 psi)
Optional
Quantity
Row Units
TypeExactEmerge™ row units
MaxEmerge™ 5 row units
or MaxEmerge 5e row units
OpenerTru-Vee Double Disk
Depth gauging
Adjustment
Walking wheels
Row unit seed hoppers

Mini-Hoppers
Row unit down force
Adjustable heavy-duty
----
Scrapers, opener blades

Seed tube sensors
Seed Meters
BaseVaccum
Optional
Finger pickup
Radial bean meter
Central Commodity SystemSeed capacity
Two CCS™ bulk tanks each with capacity of: 1762 L
50 bu
Drive System
Base56 V electric drive
Optional
Number of drive wheels
Drive wheel disconnect
Counter shaft
Drill shaft
Seed transmission
Transmission combinations
Markers
Type
Control
Marker disk
Shear bolt protection
Less marker option
Closing System
Rubber tire closing system


Cast iron closing system

Herbicide and Insecticide
Insecticide only hopper
Herbicide only hopper
Insecticide and herbicide hopper
Liquid Insecticide System
System available
Tank capacity
Seed Monitor System
BaseSeedStar™ electronic system
Optional
Tillage Attachments
Unit-mounted coulter
Frame-mounted coulter
Bubble blade
.63-in. fluted blade (25 flutes)
.7-in. fluted blade (13 flutes)
1-in. fluted blade (8 flutes)
Row tillage support hanger
Tine tooth
Cons. furrower w/ leading cutout blade
V-wing bed sweeps
Row cleaner
Row cleaner - unit-mounted coulter
Row cleaner - unit-mounted DD fert. opener
Fertilizer
Onboard / towed / tractor tanks
Tank capacity
Fixed-rate application
Variable-rate application
Pump type
Pump rate
Fertilizer opener type
Flow divider distribution system
Pressure manifold distribution system
Dry fertilizer
Dimensions
Transport width (with markers)
Transport width (without markers)
Transport length
Transport height
Transport weight
Transport underframe clearance
Field operation width
Field operation length
Ag Management Solutions
Map-based seeding
Field documentation
Parallel tracking
Additional Information
Recommended tractor horsepowerVaccum system hydraulic drive: horsepower required: 4.5-10.4 kW
6-14 hp
Minimum tractor size: 201 kW
270 hp
Tractor recommendation: Currrent model (minimum) 8430 MFWD with dual rear tires and 20 front weights.
Recommended tractor hydraulicsHydraulic oil required to operate the planter: 227 L/min
60 gpm
Hydraulic system standby pressure: 15,513 kPa
155 bar (2250 psi)
Hydraulic system working pressure: 20,684 kPa
207 bar (3000 psi)
Hydraulic system burst pressure: 82,737 kPa
827 bar (12,000 psi)
Warranty length
Date collected